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SUMMARY

The artificial neural networks (ANN) methodology is an outgrowth of research in artificial intelligence. In

this study the feed-forward network model that was proposed by Rumelhart, Hinton, and Williams was applied

to the mapping of functions that are encountered in structural mechanics problems. Several different network

configurations were chosen to train the available data for problems in materials characterization and structural

analysis of plates and shells. By using the recall process the accuracy of these trained networks was assessed.

INTRODUCTION

The nonlinear stress analysis of complex structural systems by using finite element analysis (FEA) pro-

grams requires an accurate representation of the material behavior, which is usually available through experi-
ments in tabular form. In the case of nonlinear material properties, including material behavior in an FEA

program leads to large computation times. There is a need to develop new ways of material characterization that
are suitable for the FEA, can capture the essence of material behavior, and are computationaUy efficient. The

use of artificial neural networks (ANN) seems to be particularly appealing for this type of problem.

For a large class of structural systems the analysis results are available in the form of tables, charts, and

equations. In designing these structures the values are often needed at intermediate points, and they are com-

puted by using linear interpolation schemes. This process is error prone and time consuming whenever values at

large numbers of intermediate points are needed. The application of the ANN methodology could be useful for

solving this type of problem.

ARTIFICIAL NEURAL NETWORKS

The problems discussed in the introduction can be solved by developing efficient procedures for generalized
multidimensional functional mapping. Ken-Ichi Funahasi (ref. 1) proved mathematically that any continuous

mapping can be approximated by multilayer neural networks with at least one hidden layer. This work was

further extended by Hornik et al. (ref. 2) to include other types of squashing functions. They also provided the

mathematical proof (ref. 3) that these types of networks are capable of approximating the arbitrary functions,

including their derivatives. Further refinement of this work can be found in reference 4. These mathematical

proofs along with other work provide an excellent basis for using the multilayer feed-forward networks with a

continuous squashing function for approximate functional mapping.



Oneof the popular ANN models of the multilayer feed-forward network is based on the studies of Rumelhart,
Hinton, and Williams (ref. 5). It consists of an input, an output, and a minimum of one intermediate layer (fig. 1).

The network training is accomplished by using the backpropagation algorithm as described in reference 5. It

establishes the weights of the interconnections and the bias values for the processing elements. They are saved

in a small file for use in the network recall process. This ANN model has been successfully used in pattern

recognition tasks, such as text-to-speech synthesis (ref. 6), image processing and compression (ref. 7), and non-

linear signal processing (ref. 8).

The application of the ANN that is based on the backpropagation algorithm in computational structures

technology (CST) is relatively new in origin. Rehak et al. (ref. 9) used ANN for simulating the dynamic behav-
ior of structures. Troudet and Merrill (ref. 10) adopted a similar approach for estimating the fatigue life of struc-

tural components. Berke and Hajela (ref. 11) used ANN for structural analysis and shape optimization of trusses.

The ANN approach has shown considerable promise in material properties characterization. Brown et al. (ref. 12)

used it to model composite ply micromechanics. Ghaboussi et al. (ref. 13) have modeled the nonlinear behavior

of concrete. McC.auley (ref. 14) has explored the optical implementation of neural networks for engineering design.

The mathematical proofs for the convergence of an ANN that are based on the backpropagation algorithm

do not provide guidelines for creating an appropriate network configuration or for network training. Presently,

guidelines are provided by creating different network configurations and testing them numerically for accuracy

and convergence characteristics. Extensive numerical experimentation is required before appropriate ANN models

can be developed for a given problem. This approach has been tried in applying ANN in CST. In many cases a

large number of processing units are used for intermediate layers, leading to an excessive amount of training

time and a redundancy in the ANN configurations.

OBJECTIVE AND SCOPE OF STUDY

A main objective of this study was to obtain the smallest possible ANN configurations for CST problems.

The problems were selected to reflect different types of functional approximations. The first two problems in-

volved material property characterization. They were mainly chosen to develop a suitable form wherein trained
networks could be added to a nonlinear FEA program without major modifications. This interfacing is needed to

provide material data to an FEA program. The plate and shell problems were used to test the capability of the

ANN method for multidimensional functional approximations. In both cases tubular data were used to train the

ANN models and to test the accuracy of the trained networks' interpolation capability at the intermediate points.

The details for these problems are provided in the next section.

PROBLEM DESCRIPTION

The first problem of material characterization maps the strain values to the known stress values. The

following equation relates strains to stresses:

o =E0(e - 5e 2) for e > 0

cr = E0(e + 5e 2) for e < 0

(1)

The ANN model is given the strain values e as input, and the stress values o are obtained as output.



The second problem also falls into the category of material property characterization. The ANN models are

given the strain values e as input, and predictions are made for the stresses o and the tangent modulus do/de

that are needed for the elastic-plastic stress analysis. This constitutes a mapping of one independent variable to

two dependent variables. It allows the inclusion of the variable and its slope. The slope of the function is given as

do
de - E°(I - 10e) for e > 0 (2)

The distribution of bending moment factors in a simply supported rectangular plate is given in tabular form

in reference 15. The two input units of the neural network model are the aspect ratio bla and the x coordinate of

the plate (fig. 2). The y coordinates for all the points are zero. The two outputs from the ANN model are the

factors for the bending moments M x and My. This third problem was chosen to assess the modeling capability of
ANN for a two-independent-variables-to-two-dependent-variables functional mapping.

The fourth problem is for an elliptical paraboloid shell from reference 16. In this case the input variables

are x/a, y/b, and cl/c2, defining the location of the points at which the stress resultants are computed and the
geometry of the shell, respectively, (fig. 3). The outputs for the ANN models are the coefficients for the stress

resultants Ny, Nx, and N_y. The problem allows us to investigate a more generalized functional mapping where

the three input variables defining geometry are mapped to a space of the three stress resultant coefficients.

The standard configurations of a feed-forward network that includes an input layer, an output layer, and an

intermediate layer were utilized for this study. A typical network configuration is shown in figure 1. The com-

puter program NETS (ref. 17) was used for all the network training and recall. In the program the backpropaga-

tion algorithm was implemented at the NASA Johnson Space Center. The number of processing units in the

intermediate layer was established by arbitrary selection, and then the accuracy of the trained network model
was assessed.

RESULTS AND DISCUSSION

Materials Characterization

For stress-strain curve modeling, the following ANN configurations were chosen:

(1) Case 1, 1-5-1.13

(2) Case 2, 1-10-1.13

(3) Case 3, 1-15-1.13

(4) Case 4, 1-5-1.19

(5) Case 5, 1-10-1.19

The first number denotes the number of input units. The second number represents the number of hidden units,

and it varies from 5 to 15. The third number (1) is the number of output units. The number after the period is

the total number of input-output pairs that were used for network training. These pairs were obtained from equa-

tion (1). All the training data were scaled between 0 and 1 because of the restriction that is placed by the back-

propagation algorithm which is implemented in NETS. The networks were trained with a maximum error not

exceeding 1.8 percent and a root-mean-square (rms) error less than 1 percent. After the training the files containing

weights and biases were saved for each network to use in assessing the accuracy of all the neural network models.



The input strain values used for training were augmented by additional strain values from equation (2) to

propagate the data. The predicted stress values from the neural networks were plotted along with the actual
values obtained from equation (2). Figure 4(a) shows good prediction capability for cases 1 to 3, with case 3

being closest to the actual stress-strain curve. Cases # and 5 (fig. 4(b)) were in good agreement with the known
results. Cases 3 and 4 (fig. 4(c)) were very close to the chosen stress-strain curve. It is difficult to select the best

case from these plots. Therefore, for a closer look at the accuracy of the results, the error in neural network

interpolation versus strain is plotted in figure 5. The error was within +3 percent when the strains used for train-

ing were also used for predicting stresses. For other strain values these errors could be significant, especially at

the two end points of the stress-strain curve, where strain values were nearly +_0.2. The other location where

errors were significant was near the strain value of zero. Note that at these strain levels the actual stress is

approaching zero. Any small variation in the neural network prediction causes a large relative error because in

calculating the error the difference between the actual and predicted stress is divided by a stress value that is

small in magnitude. This division artificially magnifies the magnitude of the error. Therefore, the ANN predic-

tions, although very accurate, could be in error at a few points, and careful checking is necessary before select-

ing an appropriate ANN configuration for material characterization.

Several network configurations were tried for the second problem, where the strains e were used as input to

predict the stresses tr and the tangent modulus do�de given by equations (1) and (2). The two networks with the
most accurate results were

(1) Case I, 1-20-2.11 (26 000 training cycles)

(2) Case II, 1-20-2.21 (4000 training cycles)

Both networks have identical configurations with 1 input unit, 2 output units, and 20 hidden units. They

only differ in the number of training pairs used. For ease I, 11 of the 21 input-output pairs were used and for

case II all 21 input-output pairs were used. For both cases all the 21 pairs were used for propagation, resulting
in rote memorization for the second network model. The maximum allowed errors in training were 0.2 and

8 percent for cases I and II, respectively. Figure 6 contains the plot for the exact curve from equation (1) and

the predicted stress values from cases I and U. The relative errors in stresses are shown in figure 7. The errors
for case I were within +_1.5 percent for all the points except at two points where they were nearly 15 percent.

The errors for case II were within +11 percent, making it less accurate than the case I ANN model. Figure 8

shows the plot of tangent modulus versus strain. The relative errors are plotted in figure 9. A trend similar to

the stress prediction can be observed here. The inaccuracy of the case II ANN model in predicting results can
be attributed to the maximum error that was allowed for training the network. However, a low maximum error

leads to a large number of training cycles, which may not be feasible for some problems.

Plate Problem

For the plate problem two input units were used to supply the values of x and bla. The two output units

were for the bending moment factors Mx and M r, as defined in reference 15. Three different values were chosen
for the number of hidden units. A set of 45 input-output pairs was used for training. A different set of 25 pairs

was used for obtaining the bending moments at intermediate points. Table I shows the number of cycles and the

maximum and root mean square (rms) errors obtained in training the ANN models that were used for the plate

problems. This table shows that the 2-15-2 network model had the smallest maximum error.

For the plate problem it was difficult to plot the predicted bending moment factors with the exact solution.

Therefore, an absolute relative error distribution in predictions by different ANN models using the training data

set are shown in figure 10(a) as a bar chart. These predictions can be considered as a rote memorization because

the same data were used for interpolation purposes that were used for training. The results were extremely
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accuratefor all thecases.Approximately90percentof thepredictedvalueshaderrorsthatwerebelow

3 percent.

Figure 10(t)) shows the same quantities as discussed before. However, in this case a different set of data

points was used for predicting the bending moment factors for the plate problem than was used for training.

This could be termed "generalization" by the network. In this case 84 percent of the predicted values had errors

that were below 3 percent, showing very good generalization capability for all the constructed ANN models.

Overall, for the plate problem the ANN approach gave extremely good results. For a closer look at the predicted

and exact values of the bending moment factors for the plate problem, see table II.

Shell Problem

For the elliptical paraboloid shell problem three input units were used for x/a, y/b, and qlc 2, def'ming the

location of the points at which the stress resultants are computed and the geometry of the shell. The three output
units were used for the three coefficients for the stress resultants as defined in reference 16. Three ANN con-

figurations were tried with 6, 10, and 15 hidden units, respectively. The network configuration with 6 hidden

units had a very low rate of convergence and was discarded. The network with 10 hidden units has a maximum
error of 0.03 and an rms error of 0.008 with 4504 cycles. The network with 15 hidden units was allowed to run

for 22 439 cycles with a maximum error of 0.039 and an rms error of 0.005, which was less than that for the

second configuration. However, note that for all these configurations most of the error reduction was accom-

plished in the first few thousand cycles and after that the convergence rate was very low. For training purposes
100 input-output pairs were used. For interpolation at intermediate points a separate set of 25 pairs was used

that included a value of infinity for the coefficient for N_ at five points.

Once again it was difficult to plot the predicted results versus the exact results; therefore an error distribu-

tion was computed for the predicted values when the training set and the intermediate points were used for

propagation. Only the network model with configuration 3-15-3 was used because it had the smallest rms error.

The results are plotted in figure 11. The error distribution shows that the predicted results were most accurate

for the coefficients for Ny and least accurate for the coefficients for N_y. It also shows that the prediction accu-
racy for the training set was extremely high (i.e., 96 percent of the predicted values had errors that were below

3 percent for the coefficients for Ny). The interpolation accuracy for the shell problem was low relative to that
for the plate problem. This could be attributed to the small magnitudes of these coefficients. However, in the

case of the coefficients for N_, at five points the actual magnitude was infinity. The ANN model cannot be
trained for this value. For a closer look at the magnitudes of all three coefficients of the stress resultants at 125

points, which included the training and intermediate data sets, see table III. It can be observed that the actual

numbers are much closer than shown by the error distributions on the plots.

CONCLUSIONS

For all the problems the artificial neural network (ANN) approach led to very small files containing the
weights and biases that were used for reconstructing the original functions. It captured all the essential char-

acteristics of these functions, leading to a significant amount of data compression. Also, the trained networks in

their present forms for the material characterization could easily be incorporated with minimal modifications

into an existing finite element program.

The ANN approach for functional approximation offers a viable alternative to other methods that are used

for similar purposes. It is capable of mapping multidimensional functions as shown by the different solutions to

the problems. All the ANN models that were trained in this study were considerably smaller than the networks



reportedin other studies. The results show that ANN approximations are very good for associative recall with

rote memorization. They can also extract the general trend from the data. However, caution must be exercised in

using this type of interpolation, as can be seen from the shell example.

RECOMMENDATIONS AND SUGGESTIONS FOR FUTURE WORK

It is difficult to establish guidelines for configuring an appropriate artificial neural network (ANN) for

different problems. Similarly, it is not possible to predict a priori the number of cycles needed for training an

accurate ANN. Therefore, there is a strong need to establish some of these guidelines either by mathematical

proofs or by an extensive numerical experimentation. The backpropagation algorithm has a tendency to move

toward a lower convergence rate in the training process. This problem can be partially alleviated by changing

the learning rate and the momentum term in the learning equation. It is suggested to try other ANN methods,

such as a counterpropagation network, to investigate the convergence rate during training and to achieve more
accurate results.
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TABLE I.--NEURAL NETWORK CONFIGURATIONS

WITH CORRESPONDING MAXIMUM AND

RMS ERRORS AND NUMBER OF

CYCLES FOR PLATE PROBLEM

ANN Maximum

configurat ion error

2-6-2 0.0431

2-10-2 .0263

2-15-2 .0180

rms Number

error of cycles

0.0145 6 000

.0092 30 000

.0060 23 000
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TABLE II.--NUMERICAL FACTORS FOR BENDING MOMENTS OF

SIMPLY SUPPORTED RECTANGULAR PLATE UNDER UNIFORM

PRESSURE FOR ANN CONFIGURATION 2-15-2 AND

EXACT SOLUTION

(a) Bending moment Mx; interpolation at training set

bla

1.0

1.2

1.4

1.6

1.8

2.0

2.5

3.0

4.0

Solution

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

x= O.la x = 0.2a x = 0.3a x = 0.4a

Mxat y= 0

0.0227 0.0343

.0209 .0343

.0253 .0424

.0256 .0432

.0288 .0504

.0297 .0509

.0325 .O571

.0330 .0572

•0356 .0623

.0357 .0623

.0381 .0662

.0378 .0663

.0416 .0723

.0413 .0729

.0431 .0754

.0431 .0763

.0443 .0791

.0445 .0791

0.0421

.0424

.0536

•0545

.0644

.0649

.0734

.0736

.0804

.0806

.0858

.0861

.0943

.0952

.0988

.1000

.1037

• 1038

0.0462

.0466

.0597

.0607

.0720

•0730

.0822

.0831

.0905

.0913

.0972

.0978

.1080

• 1085

.1137

.1142

.1186

.1185

Co) Bending moment My; interpolation at training set

I x = 0.5a

0.0472

.0479

.0607

.0627

.0738

.0755

.0846

.0862

.0933

.0948

.1004

.1017

.1126

.1129

•1187

.1189

•1224

.1235

bla

1.0

1.2

1.4

1.6

1.8

2.0

2.5

3.0

4.0

Solution

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

x = O.la
I

x=O.2a [ x=O.3a x=O.4a

Myaty=O

x = O.Sa

0.0170

.0168

.0174

.0174

.0174

.0175

.0171

.0171

.0167

.0167

.0162

.0162

.0153

.0152

.O146

.0145

.0140

.0138

0.0295 0.0398

.0303 .0400

.0315 .0421

.0315 .0417

.0316 .0419

.0315 .0418

.0309 .0409

.0309 .0411

.0300 .03966

.0301 •0399

.0290 .0384

.0292 .0387

.0270 .0356

.0272 .0359

.0258 .0337

.0258 .0340

.0246 .0322

.0246 .0322

0.0460

.0459

.0477

.0480

.0475

.0481

.0465

.0472

.0453

.0459

.0439

.0444

.0409

.0412

.0389

.0390

.037t

.0369

0.0479

.0479

.0495

.O501

.0496

.0502

.0492

.0492

.0483

.0479

.0469

.0464

.0430

.0430

.0403

.0406

.0381

.0384



TABLE II.--Concluded.

(c) Bending moment M_ interpolation at intea'mediate points

b/a

1.1

1.3

1.5

1.7

1.9

Solution

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

x = 0.1a x = 0.2a x = 0.3a x = 0.4a

Mxat y=0

0.0239

.0234

.0270

.0277

.0306

.0314

.0341

.0344

.0370

.0368

0.0383

.0389

.0465

.0472

.0539

.0544

.0598

.0599

.0644

.0644

0.0478

.0486

.0592

.0599

.0691

.0695

.0771

.0773

.0833

.0835

0.0529

.0541

.0661

.0671

.0774

.0783

.0866

.0874

.0940

.0948

x = 0.Sa

0.0538

.0554

.0675

.0694

.0795

.0812

.0892

.0908

.0970

.0985

(d) Bending moment My; interpolation at intermediate points

Solution x=O.la x = 0.2a x = 0.4a x = 0.5ab/a

1.1

1.3

1.5

1.7

1.9

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

ANN

Exact

x = 0.3a

Mr at y=0

0.0173

.0172

.0175

.0175

.0173

.0173

.0169

.0169

.0164

.0165

0.0309

.0311

.0317

.0316

.0313

.0312

.0305

.0306

.0295

.0297

0.0415

.0412

.0422

.0417

.0415

.0415

.0403

.0405

.0390

.0393

0.0473 0.0490

.0475 .0493

.0477 .0496

.0482 .0503

.0471 .0495

.0478 .0498

.0459 .0488

.0466 .0486

.0446 .0476

.0451 .0471
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Input layer Hidden layer Output layer

Figure 1 .-- Configuration of a neural network.

b/2

a/2 ,,,,- a/2

Figure 2.-- S_mply supported rectangular plate.
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Figure 3.-- Elliptic paraboloid shetl geometry and stress resultants.
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Figure 4.--Neural network predictions for cases I to 5.
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Figure 10.--Error distribution for plate problem.
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